【协和医学杂志】成纤维细胞生长因子在阿尔茨海默病中的作用机制
医疗资讯网-妇科问诊
综 述
阿尔茨海默病(AD)是临床最常见的神经退行性疾病,其主要特征表现为进行性认知功能下降,给社会和家庭造成沉重的医疗和经济负担。然而,该病的发病机制尚未完全阐明,目前的研究证实,其与β-淀粉样蛋白(Aβ)及Tau蛋白沉积、神经元变性密切相关[1-2]。AD的主要神经病理学标志是Aβ斑块和神经原纤维缠结产生,同时伴有神经炎症反应[3],上述病理变化可引起神经元损伤及突触功能障碍[4],最终导致中枢神经系统的退行性病变。
研究表明,成纤维细胞生长因子(FGF)与其受体(FGFR)特异性结合,顺序激活下游信号转导通路[5],从而调控靶细胞的增殖、分化、迁移和存活等生理过程[6]。一项AD与程序性衰老的相关性研究表明,过表达的FGF可延缓机体免疫衰老,减轻脑皮质神经炎症反应,降低早发性AD的患病率[7],这提示FGF可能参与AD发病过程。本文就FGF在AD中的作用进行综述,以期为阐明AD的发病机制及早期诊断提供新思路。
1 FGF/FGFR
FGF是由23种核心序列高度保守的基因家族编码的生长因子超家族组成,包括FGF 1~23,根据其在体内的作用方式不同,可分为自分泌/旁分泌型(FGF 1、4、7、8、9亚家族)、细胞内型(FGF 11亚家族)以及内分泌型(FGF 15/19亚家族)[8]。而FGFR则是由5种高度序列同源性成员组成的家族,包括FGFR 1~4和成纤维细胞生长因子受体样蛋白1(FGFRL1)[9]。
FGFR本质是由细胞外配体结合域和细胞内酪氨酸激酶结构域组成的一种受体酪氨酸激酶[10]。当细胞接受外界刺激时,FGF配体在硫酸肝素蛋白多糖(HSPG)共受体帮助下,交联两个FGFR,形成FGF/FGFR/HSPG三元复合物,诱导FGFR的酪氨酸激酶结构域磷酸化后激活[11],启动下游的信号转导通路,参与胚胎发育、血管生成、组织修复和癌症发生等多种生理及病理过程[12]。
FGF在AD、帕金森病及抑郁症等多种神经精神疾病中均发挥重要作用,其主要功能包括:调控细胞有丝分裂,介导细胞增殖;下调促凋亡因子活性、灭活下游促凋亡因子,减少神经元凋亡[13];减少炎性细胞浸润、降低促炎细胞因子表达水平,同时显著增加抗氧化蛋白的表达,发挥抗炎、抗氧化作用[14]。此外,FGF还具有维持干细胞多能性和去分化的功能,与神经干细胞的增殖和分化密切相关。
2 FGF与AD相关作用机制
2.1 Ras/MAPK通路
促分裂原活化蛋白激酶(MAPK)是具有Ser/Thr蛋白激酶活性的蛋白激酶家族,通过介导细胞外刺激信号向细胞内转导,在细胞周期(增殖、分化、凋亡等过程)中扮演重要角色[15]。大鼠肉瘤(Ras)蛋白具有分子开关作用,可与Raf结合,激活Ser/Thr蛋白。Ras/MAPK通路将多种细胞外信号连接到膜受体,导致转录因子的级联反应,最终调控基因表达,改善AD相关病理变化(包括线粒体功能障碍、细胞凋亡、氧化应激和炎症反应),在AD的治疗中发挥关键作用[16]。Aβ是AD的主要致病分子,在AD小鼠模型中通过激活Ras/MAPK通路触发氧化应激,导致Aβ沉积增加,从而加重AD小鼠的认知功能障碍[17]。若抑制该通路则可抑制小胶质细胞的激活,减轻AD小鼠大脑中的Aβ负荷及神经元损伤,从而阻止AD进展[18]。
2.2 PI3K/AKT通路
PI3K/AKT通路是对细胞增殖及代谢极为重要的信号转导途径,也是抑制细胞凋亡最为关键的信号通路之一,其异常激活与AD密切相关[19]。GSK-3β是AD患者Tau蛋白超磷酸化的主要激酶,通过激活PI3K/AKT/GSK-3β信号通路,使p-PI3K、p-AKT和p-GSK-3β水平显著增加,而p-Tau蛋白水平显著降低,神经元凋亡减少,从而改善AD小鼠的空间认知障碍[20]。
最新研究结果显示,PI3K/AKT/GSK-3β/mTOR轴的异常激活可促进小胶质细胞的增殖、存活和吞噬作用,减轻Aβ负荷及神经元损伤,改善AD小鼠的行为缺陷[21]。另有研究表明,β-位淀粉样前体蛋白裂解酶-1(BACE1)缺乏可激活PI3K/mTOR/HIF-1α信号通路,通过有效的自噬溶酶体降解机制提高Aβ清除率,减轻Aβ负荷,改善突触功能,最终改善AD小鼠的学习和记忆能力[22]。
2.3 PLCγ通路
磷脂酶C γ(PLCγ)是生长因子信号通路中的重要中介分子,PLCγ分子的SH2结构域与FGFR磷酸化的Tyr766结合,激活下游通路,导致Tau蛋白过度磷酸化,形成神经纤维缠结,破坏神经系统的可塑性,继而诱发神经退行性病变,引起神经功能障碍和记忆损伤,最终导致神经元死亡和记忆力下降[23]。
抑制PLCγ通路的异常激活,可降低Tau蛋白磷酸化水平,减少海马神经元损伤,改善AD大鼠的学习和记忆能力,对AD的预后至关重要。但最新一项研究显示,PLCγ通路的激活可以促进海马神经元的树突分支延长及神经元的成熟,改善早期突触损伤及认知障碍[24]。PLCγ通路对认知障碍的早期干预具有重要意义,但其在认知功能中发挥的作用尚存争议,仍需进一步深入探究。
3 不同FGF亚型在AD中的作用
3.1 FGF1
FGF1又称酸性FGF(aFGF),是FGF超家族中最典型的成员之一。动物实验表明,FGF1由小鼠大脑冷冻损伤病变附近的星形胶质细胞产生,经由第三脑室的室管膜细胞释放至脑脊液中[25]。AD患者血清和脑脊液中均能检测到异常增多的FGF1[26],且已被证实具有类似于神经生长因子(NGF)和脑源性神经营养因子(BDNF)的神经保护功能,可通过激活PI3K-CREB-IRE1α/XBP1信号通路,降低Aβ的神经毒性,减轻AD小鼠脑部的Aβ负荷,显著改善AD小鼠的行为及认知缺陷[27]。同时,FGF1可促进神经元存活、增加成纤维细胞的侵袭能力、改善神经元损伤和突触功能障碍[28]。未来FGF1或可用于AD的早期诊断及治疗,改善AD患者的认知障碍。
3.2 FGF2
FGF2又称碱性/基础FGF(bFGF),在中枢神经系统中主要表达于星形胶质细胞、小胶质细胞和神经元,已被证实具有强大的促血管生成、抗炎及神经保护作用,并在中枢神经系统的分化过程中发挥重要作用[29]。FGF2可保护星形胶质细胞免受Aβ诱导的细胞毒性和氧化应激,相关机制可能包括:通过AKT信号通路增加星形胶质细胞中的Bcl-xL转录表达,发挥抗凋亡作用;显著降低Aβ诱导的星形胶质细胞中NF-κB的表达,改善线粒体功能障碍,从而降低氧化应激的敏感性[30]。动物实验表明,慢性皮下注射FGF2可减少Aβ和Tau蛋白表达,改善AD小鼠的空间记忆缺陷[31]。提示,使用FGF2进行全身治疗可能是一种潜在的AD治疗新选择。
3.3 FGF7
FGF7是一种经典旁分泌的肝素结合生长因子,能够促进细胞增殖、迁移和血管形成[32]、促进肿瘤细胞的侵袭和迁移[33]、抑制纤维化和促进上皮化生[34]等。研究表明,FGF7 mRNA表达水平在AD患者和AD细胞模型中均有明显升高,并通过激活下游的FGFR2/PI3K/AKT通路,诱导神经炎症及细胞凋亡[35]。
AD中的FGF7表达异常可能与miRNA 表达变化有关[36]。体外实验发现,经Aβ处理的细胞中miR-107表达降低,导致FGF7 mRNA高水平表达,细胞活力和细胞增殖率降低,相反,过表达的miR-107可降低FGF7的mRNA表达水平,减少神经炎症和细胞凋亡,恢复细胞活性[37],提示FGF7可能参与AD的发病过程。
3.4 FGF13
FGF13在人类大脑中高水平表达,不同于其他的FGF,其属于胞内非分泌型蛋白且不能激活或拮抗任何FGFR[38]。FGF13已被证实是一种调节神经元极化和迁移的微管稳定蛋白,干扰FGF13的翻译过程可影响大脑发育和认知功能[39]。FGF13可与Notch信号通路共同调控神经突起的生长和神经元的成熟[40]。研究显示,过表达FGF13通过激活PI3K/AKT/GSK-3β信号通路,抑制神经元凋亡,减轻AD大鼠的神经损伤,使AD大鼠的学习和记忆能力显著改善[41]。以上研究表明,FGF13在神经发育过程中具有重要的调节作用,或可作为AD治疗的新靶点。
3.5 FGF14
FGF14是一种存在于脑和垂体中的生物活性蛋白,可促进成纤维细胞生长,参与胚胎发育、血管生成、组织修复等过程,在发育和成熟的神经系统中通过调节神经元的可塑性和兴奋性以维持正常的神经系统功能。研究表明,FGF14可通过激活过氧化物酶体增殖物激活受体(PPARγ)引起神经突触改变,恢复神经元活性,改善AD小鼠的记忆功能[42]。
另有研究显示,FGF14能够抑制MAPK信号通路(主要抑制MAPK亚家族ERK1/2、JNK、p38磷酸化激活),减轻Aβ诱导的细胞损伤,在体外AD细胞模型中发挥神经保护作用[43],展现了其作为神经退行性疾病治疗药物的潜力。
3.6 FGF21
FGF21是与线粒体应激相关的有丝分裂因子,可减轻年龄相关性线粒体损伤,延缓衰老进程,已被证实对多种神经退行性疾病有保护作用[44-45]。近年来的研究表明,AD动物及细胞模型中存在星形胶质细胞-神经元乳酸穿梭系统(ANLSS)功能异常,而FGF21通过调节单羧酸转运蛋白表达水平可纠正ANLSS功能缺陷,进而减缓AD进展并改善记忆能力[46]。此外,FGF21还可通过调节PP2A/MAPK/HIF-1α通路,减轻Tau蛋白病理变化及Aβ诱导的细胞毒性,从而发挥神经保护作用[47],是改善AD样病理变化的潜在靶点。
3.7 FGF23
FGF23主要是一种由骨骼中骨细胞合成分泌并参与机体钙磷代谢调节的激素[48]。研究显示,FGF23表达水平的降低可导致轻微的海马神经再生损伤[49],提示FGF23缺乏会造成海马依赖性认知损害。一项基于社区长期随访的认知健康成人队列研究显示,较高水平的血清FGF23会增加AD发病风险,与认知水平具有一定的相关性[50]。同时FGF23/α-Klotho轴可通过Wnt/β-catenin途径,调节Aβ诱导的细胞炎症,FGF23过表达或α-Klotho表达被抑制可促进炎症细胞因子的产生,加剧AD进展[51]。
综上所述,由于FGF广泛参与机体生理及病理过程,因此不同FGF亚型在AD发病中可能具有相反作用。FGF7、FGF23可能通过诱导神经炎症及细胞凋亡、抑制细胞活性等相关机制,参与AD的发病及疾病进展;而FGF1、FGF2、FGF13、FGF14及FGF21则通过改善线粒体功能障碍,下调氧化应激敏感性、抑制神经元凋亡等相关机制,从而改善AD相关病理变化。
4 小结与展望
AD目前已呈年轻化趋势,多数患者发病后,认知功能将呈进行性减退,因此早期诊断并进行药物干预对预防AD患者认知功能减退具有重要意义。但AD的病理机制至今尚未完全阐明,因此尚无有效的防治手段。而部分FGF亚型可通过降低Aβ神经毒性、下调神经元氧化应激敏感性,同时调控神经元的增殖及凋亡等机制,延缓AD的疾病进展并发挥神经保护作用。FGF作为一种非细胞治疗方式,有望成为治疗AD的新手段。但FGF能否应用于AD的早期治疗,仍有待后续进一步研究。
参考文献
[1]2023 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2023, 19(4): 1598-1695.
[2]Ranasinghe K G, Petersen C, Kudo K, et al. Reduced synchrony in alpha oscillations during life predicts post mortem neurofibrillary tangle density in early-onset and atypical Alzheimer's disease[J]. Alzheimers Dement, 2021, 17(12): 2009-2019.
[3]Moonen S, Koper M J, Van Schoor E, et al. Pyroptosis in Alzheimer's disease: cell type-specific activation in microglia, astrocytes and neurons[J]. Acta Neuropathol, 2023, 145(2): 175-195.
[4]Xian Y F, Qu C, Liu Y, et al. Magnolol ameliorates behavioral impairments and neuropathology in a transgenic mouse model of Alzheimer's disease[J]. Oxid Med Cell Longev, 2020, 2020: 5920476.
[5]Xie Y L, Su N, Yang J, et al. FGF/FGFR signaling in health and disease[J]. Signal Transduct Target Ther, 2020, 5(1): 181.
[6]Sacco A, Federico C, Giacomini A, et al. Halting the FGF/FGFR axis leads to antitumor activity in Waldenström macroglobulinemia by silencing MYD88[J]. Blood, 2021, 137(18): 2495-2508.
[7]Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease[J]. Biol Rev Camb Philos Soc, 2023, 98(4): 1424-1458.
[8]Lottini G, Plicanti E, Lai M, et al. Canonical fibroblast growth factors in viral infection[J]. Rev Med Virol, 2023, 33(4): e2452.
[9]Klimaschewski L, Claus P. Fibroblast growth factor signall-ing in the diseased nervous system[J]. Mol Neurobiol, 2021, 58(8): 3884-3902.
[10]Bayle A, Martin-Romano P, Loriot Y. FIGHT against FGF/FGFR alterations: what are the next steps?[J]. Ann Oncol, 2022, 33(5): 460-462.
[11]Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades[J]. Cold Spring Harb Perspect Biol, 2014, 6(3): a008912.
[12]Giacomini A, Grillo E, Rezzola S, et al. The FGF/FGFR system in the physiopathology of the prostate gland[J]. Physiol Rev, 2021, 101(2): 569-610.
[13]Dailey L, Ambrosetti D, Mansukhani A, et al. Mechanisms underlying differential responses to FGF signaling[J]. Cytokine Growth Factor Rev, 2005, 16(2): 233-247.
[14]Dhlamini Q, Wang W, Feng G F, et al. FGF1 alleviates LPS-induced acute lung injury via suppression of inflamma-tion and oxidative stress[J]. Mol Med, 2022, 28(1): 73.
[15]Park H B, Baek K H. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(3): 188736.
[16]Zhang B Y, Zhao J, Wang Z, et al. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation[J]. Int Immunopharmacol,2020, 86: 106729.
[17]Zhan-Qiang H, Hai-Hua Q, Chi Z, et al. miR-146a aggravates cognitive impairment and Alzheimer disease-like pathology by triggering oxidative stress through MAPK signaling[J]. Neurologia (Engl Ed), 2023, 38(7): 486-494.
[18]Luo Q H, Schnöder L, Hao W L, et al. p38α-MAPK-deficient myeloid cells ameliorate symptoms and pathology of APP-transgenic Alzheimer's disease mice[J]. Aging Cell, 2022, 21(8): e13679.
[19]Fakhri S, Iranpanah A, Gravandi M M, et al. Natural products attenuate PI3K/Akt/mTOR signaling pathway: a promising strategy in regulating neurodegeneration[J]. Phytomedicine, 2021, 91: 153664.
[20]Peng X Q, Guo H S, Zhang X, et al. TREM2 inhibits tau hyperphosphorylation and neuronal apoptosis via the PI3K/Akt/GSK-3β signaling pathway in vivo and in vitro[J]. Mol Neurobiol, 2023, 60(5): 2470-2485.
[21]Wang S T, Sudan R, Peng V, et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways[J]. Cell, 2022, 185(22): 4153-4169.e19.
[22]Singh N, Das B, Zhou J, et al. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance[J]. Sci Adv, 2022, 8(29): eabo3610.
[23]Wang G Q, Zhou P, Xie D J, et al. Effects of Huangpu Tongqiao Capsules on EGFR-PLCγ signal pathway of hippocampus in rats with Alzheimer's disease[J]. China J Chin Mater Med, 2020, 45(9): 2165-2171.
[24]Chen Y S, Zhang S M, Tan W, et al. Early 7,8-dihydroxyflavone administration ameliorates synaptic and behavioral deficits in the young FXS animal model by acting on BDNF-TrkB pathway[J]. Mol Neurobiol, 2023, 60(5): 2539-2552.
[25]Mashayekhi F, Hadavi M, Vaziri H R, et al. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer's disease[J]. J Clin Neurosci, 2010, 17(3): 357-359.
[26]Peng D, Wang Y J, Xiao Y J, et al. Extracellular vesicles derived from astrocyte-treated with haFGF14-154 attenuate Alzheimer phenotype in AD mice[J]. Theranostics, 2022, 12(8): 3862-3881.
[27]Meng T, Cao Q, Lei P, et al. Tat-haFGF14-154 upregulates ADAM10 to attenuate the Alzheimer phenotype of APP/PS1 mice through the PI3K-CREB-IRE1α/XBP1 pathway[J]. Mol Ther Nucleic Acids, 2017, 7: 439-452.
[28]Chang Y T, Kazui H, Ikeda M, et al. Genetic interaction of APOE and FGF1 is associated with memory impairment and hippocampal atrophy in Alzheimer's disease[J]. Aging Dis, 2019, 10(3): 510-519.
[29]Woodbury M E, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration[J]. J Neuroimmune Pharmacol, 2014, 9(2): 92-101.
[30]Chen X, Li Z J, Cheng Y, et al. Low and high molecular weight FGF-2 have differential effects on astrocyte proliferation, but are both protective against Aβ-induced cytotoxicity[J]. Front Mol Neurosci, 2019, 12: 328.
[31]Katsouri L, Ashraf A, Birch A M, et al. Systemic administration of fibroblast growth factor-2 (FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice[J]. Neurobiol Aging, 2015, 36(2): 821-831.
[32]Zhang C, Han M, Wu S. Silencing fibroblast growth factor 7 inhibits Krypton laser-induced choroidal neovascularization in a rat model[J]. J Cell Biochem, 2019, 120(8): 13792-13801.
[33]Huang T T, Wang L, Liu D, et al. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1[J]. Int J Oncol, 2017, 50(5): 1501-1512.
[34]Takaya K, Aramaki-Hattori N, Sakai S, et al. Fibroblast growth factor 7 suppresses fibrosis and promotes epithelialization during wound healing in mouse fetuses[J]. Int J Mol Sci, 2022, 23(13): 7087.
[35]Abubakar M B, Sanusi K O, Ugusman A, et al. Alzheimer's disease: an update and insights into pathophysiology[J]. Front Aging Neurosci, 2022, 14: 742408.
[36]Samadian M, Gholipour M, Hajiesmaeili M, et al. The eminent role of microRNAs in the pathogenesis of Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 641080.
[37]Chen W, Wu L, Hu Y Q, et al. MicroRNA-107 ameliorates damage in a cell model of Alzheimer's disease by mediating the FGF7/FGFR2/PI3K/Akt pathway[J]. J Mol Neurosci, 2020, 70(10): 1589-1597.
[38]Lu H Z, Yin M C, Wang L, et al. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells[J]. Cancer Biol Ther, 2020, 21(11): 1014-1024.
[39]Pan X Y, Zhao J R, Zhou Z Y, et al. 5′-UTR SNP of FGF13 causes translational defect and intellectual disability[J]. Elife, 2021, 10: e63021.
[40]Tfilin M, Turgeman G. Interleukine-17 administration modulates adult hippocampal neurogenesis and improves spatial learning in mice[J]. J Mol Neurosci, 2019, 69(2): 254-263.
[41]Li R M, Xiao L, Zhang T, et al. Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage[J]. Neural Regen Res, 2023, 18(6): 1347-1353.
[42]Hsu W C J, Wildburger N C, Haidacher S J, et al. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease[J]. Exp Neurol, 2017, 295: 1-17.
[43]Wang L S, Jing R R, Wang X, et al. A method for the expression of fibroblast growth factor 14 and assessment of its neuroprotective effect in an Alzheimer's disease model[J]. Ann Transl Med, 2021, 9(12): 994.
[44]Conte M, Sabbatinelli J, Chiariello A, et al. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type Ⅱ diabetes and Alzheimer's disease in comparison with healthy aging[J]. Geroscience, 2021, 43(2): 985-1001.
[45]Kakoty V, Sarathlal K C, Tang R D, et al. Fibroblast growth factor 21 and autophagy: a complex interplay in Parkinson disease[J]. Biomed Pharmacother, 2020, 127: 110145.
[46]Sun Y, Wang Y, Chen S T, et al. Modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21[J]. Theranostics, 2020, 10(18): 8430-8445.
[47]Chen S, Chen S T, Sun Y, et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease[J]. Redox Biol, 2019, 22: 101133.
[48]Drew D A, Katz R, Kritchevsky S, et al. Fibroblast growth factor 23 and blood pressure in older adults: the health, aging, and body composition study[J]. Hypertension, 2020, 76(1): 236-243.
[49]Laszczyk A M, Nettles D, Pollock T A, et al. FGF-23 deficiency impairs hippocampal-dependent cognitive function[J]. eNeuro, 2019, 6(2): ENEURO.0469-ENEU18.2019.
[50]McGrath E R, Himali J J, Levy D, et al. Circulating fibroblast growth factor 23 levels and incident dementia: the Framingham heart study[J]. PLoS One, 2019, 14(3): e0213321.
[51]Li B S, Zhou M, Peng J, et al. Mechanism of the fibroblast growth factor 23/α-Klotho axis in peripheral blood mononuclear cell inflammation in Alzheimer's disease[J]. Immunol Invest, 2022, 51(5): 1471-1484.