JAMA子刊:深度学习算法识别和量化自闭症儿童的刻板运动行为的准确性

医疗资讯网-妇科问诊

刻板运动行为(Stereotypical Motor Movements, SMMs)是自闭症谱系障碍(ASD)核心症状之一,常表现为重复的、协调的、无目的的身体动作,如手拍打、身体摇晃等。这些行为影响学习和社交交流,因此对SMM的精确识别和量化对于评估自闭症严重程度和治疗效果尤为重要。传统的SMM量化方法依赖于父母报告或手工标注视频,费时费力,且主观性强。为解决这一难题,本研究旨在开发一种深度学习算法,自动识别自闭症儿童视频中的SMM行为,实现客观、快速、精准的量化。

本研究为回顾性队列研究,使用2017年至2021年在以色列Azrieli国家自闭症与神经发育研究中心采集的241名自闭症儿童的319段视频录像。每段视频时长约40分钟,总时长580小时。研究使用OpenPose算法提取每帧视频中的骨架信息,并结合目标检测算法识别视频中的儿童个体。随后,研究人员手动标注了7352段包含SMM的视频片段,并训练3D卷积神经网络识别SMM行为。数据分为训练集和测试集,其中220名儿童的数据用于训练,剩余21名儿童的数据用于测试算法性能。

在测试集中,算法能够准确识别92.53%的手动标注的SMM行为,精确率为66.82%。每位儿童的SMM数量和时长与手工标注结果高度相关(数量相关系数r=0.80;时长相关系数r=0.88,P<0.001)。此外,手动标注的SMM片段仅占所有视频的3.5%,进一步证明了自动算法在处理长视频中的稀有事件时的优势。本研究创建了迄今为止最大的自闭症儿童SMM数据集,并开发了免费开源的算法工具,便于学术界和临床研究者进一步应用和优化

算法准确性

量化刻板运动(SMM)严重程度的准确性

本研究展示了一种基于深度学习的算法,能够精准、有效地识别和量化自闭症儿童的刻板运动行为,解决了传统手工标注的耗时和主观性问题。该算法显著提高了对自闭症核心症状的客观量化能力,为临床诊断和基础研究提供了重要工具。

原始出处:

Automated Analysis of Stereotypical Movements in Videos of Children With Autism Spectrum Disorder. JAMA Netw Open. 2024;7(9):e2432851. doi:10.1001/jamanetworkopen.2024.32851

爱去舞 人体艺术 妇科学问

下篇:JAMA Psychiatry:杏仁核反应性、抗抑郁药停药与复发:一项纵向研究

上篇:Schizophrenia Bulletin:精神病症的共同结构:精神分裂症、分裂情感性障碍与精神性双相情感障碍的网络结构更多相似性而非差异

首页 > 医疗学术
闽ICP备17012959号