好文推荐 | 阻塞性睡眠呼吸暂停低通气综合征与阿尔茨海默病生物标志物研究进展
医疗资讯网-妇科问诊
摘要
阻塞性睡眠呼吸暂停低通气综合征(OSAHS)是成人和老年人群中最常见的睡眠障碍。近年来大量研究表明OSAHS会增加认知功能障碍的风险。本文总结OSAHS患者阿尔茨海默病(AD)相关的脑脊液及血浆生物标志物以及多种方法治疗OSAHS患者症状的同时也能改变AD生物标志物水平的研究结果,从而强调治疗OSAHS患者症状预防和延缓AD的发生发展的重要性。
阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome,OSAHS)是一种在睡眠过程中,由于上气道塌陷和阻塞,引发呼吸暂停和低通气,进而导致慢性间歇性低氧血症和高碳酸血症,以及睡眠结构紊乱,从而引起一系列病理生理改变的临床综合征,其常见症状表现为打鼾,白天嗜睡,晨起头痛、头晕、口干,不明原因的高血压等。OSAHS的病情轻重可以根据睡眠呼吸暂停低通气指数(apnea hypopnea index,AHI)和夜间最低血氧饱和度进行分类,其中AHI指数在5次/h~<15次/h之间为轻度,AHI指数在15次/h~<30次/h之间为中度,AHI指数大于30次/h为重度。根据患者的夜间最低血氧饱和度分类:低于80%为重度,介于80%~<85%之间为中度,85%~90%为轻度。OSAHS引起的睡眠不佳及慢性缺氧可能引起认知功能障碍及并发神经系统变性疾病。阿尔茨海默病(Alzheimer disease,AD)是一种起病隐匿的进行性发展的神经系统变性疾病。临床上以记忆障碍、失语、失用、失认、视空间技能损害、执行功能障碍以及人格和行为改变等全面性痴呆表现为特征。AD不仅严重危害了患者的身体和心理健康,还给患者家属及社会带来沉重的经济负担。近年来,大量研究发现OSAHS与AD密切相关,OSAHS患者伴有更高的AD患病率。因此,探索OSAHS患者AD相关生物标志物并及时地干预对于缓解患者疾病症状及改善其预后至关重要。
1 OSAHS和AD的因果关系
AD是最常见的神经变性痴呆,占痴呆的60%~80%,2021年我国AD患者已有983万,占60岁及以上人口的3.72%,经济负担超过1万亿元,因此预防AD的发生和发展已被证明是非常具有挑战性的社会问题。睡眠障碍,特别是OSAHS,已经被证实为AD的潜在可改变的危险因素。一项关于OSAHS与AD相关性的研究显示AD患者与健康对照者存在OSAHS的总比值比(OR)为5.05,表明近50%的AD患者存在OSAHS。此外,关于轻度认知障碍(mild cognitive impairment,MCI)患者合并OSAHS患病率的研究报道,其患病率为11%~71%不等。主观认知下降(subjective cognitive decline,SCD)患者伴有OSAHS其睡眠结构变化主要表现为睡眠的片段化及深度睡眠时间的减少。一项针对SCD患者脑脊液(cerebrospinal fluid,CSF)生物标志物的单一横断面观察研究发现,50例SCD患者中有35例合并中重度OSAHS的高患病率。上述内容综述了SCD、MCI及AD患者伴随有OSAHS的发病率。除此之外,睡眠障碍患者患痴呆风险显著增加。睡眠障碍——失眠、睡眠呼吸障碍(sleep-disordered breathing,SDB)、日间过度思睡(excessive daytime sleepiness,EDS)、睡眠-觉醒节律障碍——患者具有发生全因性痴呆、AD和血管性痴呆的高风险。此外,有研究通过调查阿尔茨海默病神经影像计划(Alzheimer’s Disease Neuroimaging Initiative,ADNI)队列,发现有SDB病史的MCI患者在出现认知障碍时的年龄与没有SDB病史的MCI患者出现认知障碍时的年龄相比至少早10年,SDB引起老年人认知能力下降。同样,通过持续正压通气(continuous positive airway pressure,CPAP)治疗SDB患者,能够降低SDB患者MCI或AD发病率,该研究发现了在老年人群中识别SDB并尽早治疗对于预防或延缓MCI和AD发病的重要性。因此,OSAHS和AD具有双向关系,有证据表明在已经诊断为MCI或AD的患者中经常合并OSAHS,但OSAHS也可能是成人和老年人发生MCI和AD的危险因素,加速认知能力下降,可能在间歇性缺氧和睡眠失调过程中诱发或加速AD神经变性过程。OSAHS可能通过睡眠中断和间歇性缺氧导致AD神经变性,从而影响β淀粉样蛋白(amyloid β-protein,Aβ)的加工和清除,促进tau病理的神经原纤维缠结(neurofibrillary tangles,NFT)的聚集,加重年龄相关的记忆缺陷,并促进脑白质和灰质的改变。
2 OSAHS和CSF/血浆AD生物标志物
2023年美国国家老龄化研究所和阿尔茨海默病协会(National Institute on Aging-Alzheimer’s Association,NIA-AA)公布了阿尔茨海默病最新诊断标准,其中特异性生物学标志物包括了CSF和血液的Aβ42/Aβ40,P-tau 181,P-tau 217。AD相关的CSF及血液生物标志物同Aβ-PET、Tau-PET一样,能够早期诊断MCI及AD,尤其是血液生物标志物,具有费用低,几乎无创,更容易被患者接受,适合AD筛查。此外,最近有研究发现血浆Aβ42/Aβ40异常可能早于脑脊液Aβ42/Aβ40和Aβ-PET异常。
2.1 OSAHS患者CSF T-tau和P-tau水平
tau蛋白,也被称为微管相关蛋白(microtubule-associated protein-tau,MAPT),是神经系统中神经元表达水平最高的蛋白质之一,它对稳定神经元微管系统、调控神经细胞生长发育以及神经传导功能具有重要作用。然而,神经元内tau蛋白过度磷酸化引起NFT,NFT与微管蛋白的结合力降低,导致正常的微管解聚,进而影响到神经元的正常功能,引起神经元的死亡,是AD患者的一个关键病理标志。在疾病的早期阶段,NFT首先起始于皮质下核团和内嗅皮质,之后是边缘系统和邻近皮质,最后沉积于初级皮质。
近年来不少研究探索了OSAHS患者CSF T-tau和P-tau水平变化。Díaz-Román等发现在MCI合并OSAHS的患者中较高的AHI与CSF中较高的P-tau和T-tau相关。此外,有研究分析在OSAHS患者CSF中AD相关病理标志物的变化,结果显示,与健康对照组相比,OSAHS患者T-tau水平升高,而P-tau无明显变化。然而,另外有相关的横断面研究发现,OSAHS患者与对照组CSF T-tau和P-tau水平无差异。与此同时,Mohammadi团队的研究发现在伴有以及不伴OSAHS的AD患者CSF T-tau、P-tau蛋白水平变化无统计学意义。此外,在一项为期222年的前瞻性研究中,纵向研究并未报告OSAHS患者CSF tau蛋白水平的变化。然而,另一项调查MCI或AD患者CSF中AD相关生物标志物变化的纵向研究报告发现,OSAHS可引起CSF T-tau和P-tau水平更快升高。目前关于MCI或AD患者伴或者不伴有OSAHS其CSF中T-tau,以及P-tau的水平异质性较大,可能是AD患者本身CSF中T-tau和P-tau处于较高水平,OSAHS引起tau变化有限。另外,目前缺乏对CSF中P-tau不同的磷酸化片段的tau如P-tau 181,P-tau 217或者P-tau 231研究,后续研究人员可就此类患者CSF中不同磷酸化位点的P-tau进行进一步的研究。
2.2 OSAHS患者血浆T-tau和P-tau水平
血浆是生物标志物分析的理想生物体液,因为血液样本易于采集,并便于纵向前瞻性研究。近年来,随着检测技术的进步,单分子阵列(single molecular array,Simoa)技术的广泛应用,由于其高灵敏度、高精准度以及高线性范围,能够检测血浆中fg/ml量级的微量蛋白。大量关于血浆AD生物标志物的研究被报道,血浆tau蛋白水平已成为脑神经元损伤的重要生化标志物。有研究发现,与健康对照组相比,OSAHS患者血浆中T-tau以及P-tau均显著增加。同样地,Mohammadi团队的研究统计了AD患者伴有以及不伴有OSAHS血浆tau蛋白水平,其结果显示,伴有OSAHS的AD患者其血浆T-tau以及P-tau均高于不伴有OSA的AD患者。在OSAHS患者与非OSAHS的比较中可以发现,CSF中P-tau、T-tau的变化不明显,异质性较强,而血浆P-tau,T-tau的变化明显。尤其是Mohammadi团队的研究发现CSF中P-tau,T-tau变化不明显,而血浆中OSAHS伴AD患者其T-tau以及P-tau均高于不伴有OSAHS的AD患者,揭示了血浆tau水平在OSAHS中可能有着巨大的研究潜力及临床诊断应用价值。除此之外,另有研究发现OSAHS患者血浆T-tau水平与嗜睡量表评分、低通气指数以及氧减指数相关,且在CPAP或悬雍垂腭咽成形术治疗后OSA患者血浆P-tau、T-tau得到一定程度的改善。然而,目前关于OSAHS血浆tau蛋白尚无纵向研究。鉴于血浆tau水平在AD诊断中的前景,有必要对OSAHS患者进行前瞻性纵向研究。
2.3 OSAHS患者的CSF Aβ水平
CSF Aβ42水平的下降至少比出现AD痴呆提前10年。目前对于Aβ的治疗仅有仑卡奈单抗(lecanemab)获得美国食品药品监督管理局(Food and Drug Administration,FDA)和我国药品监督管理局批准上市,lecanemab能够减少Aβ的沉积,对早期AD病程进展有一定的延缓的作用。因此在AD临床前期SCD阶段或者MCI阶段预防并干预至关重要。事实上,在淀粉样蛋白级联反应中,CSF中Aβ水平的升高被认为是大脑Aβ失调的早期表现,紧接着CSF Aβ42水平的降低,与大脑中Aβ斑块的时间顺序沉积相对应。CSF Aβ水平的这些病理变化反映了Aβ产生和清除之间的不平衡(产生增加而清除减少),或者由于大脑物理化学微环境的改变促进了Aβ的聚集、沉积和CSFAβ水平的降低。
Osorio等的研究报道了携带ApoE2或ApoE4基因型的健康个体中较高的AHI与较低的CSF Aβ42水平相关。基于这一发现,另外有研究报道OSAHS患者的CSF Aβ42水平较对照组降低。此外,一项研究报告了约64%的重度OSAHS患者CSF Aβ42水平降低,且在随后的Aβ-PET中发现了脑内Aβ沉积。与此同时,有报道称OSAHS患者CSF Aβ40水平降低。因此,OSAHS患者的特点是大脑Aβ代谢失调。然而,这些发现背后的机制尚不清楚。根据动物模型研究报道,一方面,间歇性缺氧会改变脑内Aβ代谢,另一方面,睡眠片段化可能会导致淋巴功能障碍,这些并发机制可能导致CSF Aβ水平和脑Aβ沉积的变化。此外,体外和体内缺氧和缺血均有报道可上调淀粉样前体蛋白,通过β分泌酶激活导致Aβ积累。基于这些发现,并考虑到上述Aβ级联反应,导致OSAHS患者CSF Aβ水平降低和Aβ斑块的形成。随后的纵向研究进一步证实了OSAHS与AD风险之间的关联。同样,在调整年龄、性别、体重指数(body mass index,BMI)和ApoE4参数后,CSF Aβ42水平的年变化率与老年人OSAHS严重程度相关。此外,研究显示OSAHS严重程度对CSF Aβ42水平纵向下降的影响比ApoE4等位基因更显著。以上研究仅仅讨论了Aβ42或者Aβ40,并未提及OSAHS与Aβ42/Aβ40的关系。在AD患者中,CSF Aβ42/Aβ40显著下降是AD重要病理标志物之一。目前仅有Mohammadi团队统计相关研究中AD患者伴有及不伴有OSAHS与Aβ42/Aβ40的关系,其结果显示AD患者伴有OSAHS与AD患者不伴有OSAHS其CSF Aβ42/Aβ40无明显变化。目前相关研究过少,OSAHS与CSF Aβ42/Aβ40的关系仍需有更多的研究进行进一步的验证。
2.4 OSAHS患者的血浆Aβ水平
同血浆中T-tau和P-tau一样,血浆Aβ水平由于Simoa技术的出现可预测大脑Aβ负荷和认知减退。相较于Aβ-PET以及CSF Aβ水平的检测,血浆Aβ水平的检测相对便宜、微创、容易获取,且更容易被患者所接受,尤其是处于SCD阶段或者MCI阶段的患者。Motamedi团队发现在轻度OSAHS患者、中度OSAHS患者以及健康正常人中,Aβ42及Aβ40表达水平无差异。Przybylska-Kuć等研究发现中度OSAHS患者血浆Aβ40为191.1 pg/ml,显著高于轻度OSAHS患者(159.4 pg/ml)以及健康正常人(76.9 pg/ml),且与低氧血症严重程度相关,而3组人群Aβ42无差异。然而,有研究发现OSAHS患者血浆Aβ42与嗜睡量表评分、低通气指数以及氧减指数相关,且在CPAP或悬雍垂腭咽成形术治疗后OSAHS患者血浆Aβ42得到一定程度的下降。除此之外,又有研究发现相较于健康人,OSAHS患者血浆Aβ42显著升高而Aβ40无差异。另有研究招募了36名OSAHS患者,检测其血浆Aβ42及T-tau水平,将Aβ42及T-tau水平高的18个人分为AD高风险组,低水平的18个人分为AD低风险组,通过多导睡眠监测发现,AD高风险组与低通气指数以及氧减指数正相关。同样地,Mohammadi团队的荟萃分析结果显示与健康对照相比,OSAHS患者血浆Aβ42上调,而Aβ40无变化,此外,该团队进一步发现轻中度OSAHS患者与中重度OSAHS患者血浆Aβ42/Aβ40无差异。对于OSAHS患者血浆中Aβ42、Aβ40的研究,较多地发现OSAHS患者血浆Aβ42上调Aβ40无变化,但也有研究显示Aβ42无变化而Aβ40上调,存在一定的异质性,仍需进一步的纵向研究发现其可能的时间相关的变化。
3 总结与展望
OSAHS是AD的病理学改变、疾病进展及其一系列并发症的危险因素。本研究报告了OSAHS患者AD病理生物标志物的改变。此外,AD患者合并OSAHS可加速AD患者的认知能力下降。因此,改善AD患者认知的干预措施,包括OSAHS的评估和治疗,可能对日常生活产生积极影响。这有助于维持患者的独立性,减轻照顾者的负担和相关费用。此外,在未来,诊断SCD伴发OSAHS患者并及时进行CPAP或悬雍垂腭咽成形术治疗可以改善夜间睡眠时低通气及缺氧的症状,并可能延缓AD病理级联反应,即大脑Aβ的改变。因此在有或没有认知功能下降的成人和老年人中筛查和治疗OSAHS至关重要。
参考文献
[1]Baillieul S,Dekkers M,Brill AK,et al. Sleep apnoea and ischaemic stroke:current knowledge and future directions[J]. Lancet Neurol,2022,21(1):78-88.
[2]Scheltens P,De Strooper B,Kivipelto M,et al. Alzheimer’s disease[J]. Lancet,2021,397(10284):1577-1590.
[3]Mohammadi I,Adibparsa M,Najafi A,et al. A systematic review with meta-analysis to assess Alzheimer’s disease biomarkers in adults with or without obstructive sleep apnoea[J].Int Orthod,2023,21(4):100814.
[4]Blackman J,Swirski M,Clynes J,et al. Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer’s disease:a systematic review[J]. J Sleep Res,2021,30(4):e13229.
[5]Li J,Zhao L,Ding X,et al. Obstructive sleep apnea and the risk of Alzheimer’s disease and Parkinson disease:a Mendelian randomization study OSA,Alzheimer’s disease and Parkinson disease[J]. Sleep Med,2022,97:55-63.
[6]Huang H,Li M,Zhang M,et al. Sleep quality improvement enhances neuropsychological recovery and reduces blood Aβ42/40 ratio in patients with mild-moderate cognitive impairment[J]. Medicina (Kaunas),2021,57(12):1366.
[7]Kong W,Zheng Y,Xu W,et al. Biomarkers of Alzheimer’s disease in severe obstructive sleep apnea-hypopnea syndrome in the Chinese population[J]. Eur Arch Oto Rhino Laryngol,2021,278(3):865-872.
[8]任汝静,殷鹏,王志会,等. 中国阿尔茨海默病报告2021[J]. 诊断学理论与实践,2021,20(4):317-337.
[9]Cai H,Pang Y,Fu X,et al. Plasma biomarkers predict Alzheimer’s disease before clinical onset in Chinese cohorts[J]. Nat Commun,2023,14(1):6747.
[10]Mubashir T,Abrahamyan L,Niazi A,et al. The prevalence of obstructive sleep apnea in mild cognitive impairment:a systematic review[J]. BMC Neurol,2019,19(1):195.
[11]Liguori C,Mercuri NB,Izzi F,et al. Obstructive sleep apnea is associated with early but possibly modifiable Alzheimer’s disease biomarkers changes[J]. Sleep,2017,40(5):zsx011-zsx019.
[12]Shi L,Chen SJ,Ma MY,et al. Sleep disturbances increase the risk of dementia:a systematic review and meta-analysis[J]. Sleep Med Rev,2018,40:4-16.
[13]Osorio RS,Gumb T,Pirraglia E,et al. Sleep-disordered breathing advances cognitive decline in the elderly[J]. Neurology,2015,84(19):1964-1971.
[14]Jessen F,Wolfsgruber S,Kleineindam L,et al. Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers[J]. Alzheimers Dement,2023,19(2):487-497.
[15]Liu H,Barthélemy NR,Ovod V,et al. Acute sleep loss decreases CSF-to-blood clearance of Alzheimer’s disease biomarkers[J]. Alzheimers Dement,2023,19(7):3055-3064.
[16]Parhizkar S,Gent G,Chen Y,et al. Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice[J]. Sci Transl Med,2023,15(693):eade6285.
[17]Bianchetti A,Ikeda M,Mateos R,et al. The NIA-AA revised clinical criteria for Alzheimer’s disease:are they too advanced?[J]. Int Psychogeriatr,2023,35(12):679-681.
[18]Ashton NJ,Janelidze S,Mattsson-Carlgren N,et al. Differential roles of Abeta42/40,p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring[J]. Nat Med,2022. 28(12):2555-2562.
[19]Mila-Aloma M,Ashton NJ,Shekari M,et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer’s disease[J]. Nat Med,2022,28(9):1797-1801.
[20]Karikari TK,Emersic A,Vrillon,A. et al. Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis[J]. Alzheimers Dement,2021,17(5):755-767.
[21]Cai Y,Shi D,Lan G,et al. Association of β-amyloid,microglial activation,cortical thickness,and metabolism in older adults without dementia[J]. Neurology,2024,102(7):e209205.
[22]Gonzalez-Ortiz F,Turton M,Kac PR,et al. Brain-derived tau:a novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration[J]. Brain,2023,146(3):1152-1165.
[23]Bellaver B,Povala G,Ferreira PCL,et al. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease[J]. Nat Med,2023,29(7):1775-1781.
[24]Arnsten AFT,Datta D,Del Tredici K,et al. Hypothesis:Tau pathology is an initiating factor in sporadic Alzheimer’s disease[J]. Alzheimers Dement,2021,17(1):115-124.
[25]Díaz-Román M,Pulopulos MM,Baquero M,et al. Obstructive sleep apnea and Alzheimer’s disease-related cerebrospinal fluid biomarkers in mild cognitive impairment[J]. Sleep,2021,44(1):zsaa133.
[26]Kang J,Tian Z,Wei J,et al. Association between obstructive sleep apnea and Alzheimer’s disease-related blood and cerebrospinal fluid biomarkers:a meta-analysis[J]. J Clin Neurosci,2022,102:87-94.
[27]Targa A,Dakterzada F,Benítez ID,et al. Circulating microRNA profile associated with obstructive sleep apnea in Alzheimer’s disease[J]. Mol Neurobiol,2020,57(11):4363-4372.
[28]Ju YE,Finn MB,Sutphen CL,et al. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid[J]. Ann Neurol,2016,80(1):154-159.
[29]Liguori C,Mercuri NB,Nuccetelli M,et al. Obstructive sleep apnea may induce orexinergic system and cerebral β-amyloid metabolism dysregulation:is it a further proof for Alzheimer’s disease risk?[J]. Sleep Med,2019,56:171-176.
[30]Sharma RA,Varga AW,Bubu OM,et al.Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study[J]. Am J Respir Crit Care Med,2018,197(7):933-943.
[31]Bubu OM,Pirraglia E,Andrade AG,et al. Obstructive sleep apnea and longitudinal Alzheimer’s disease biomarker changes[J]. Sleep,2019,42(6):zsz048.
[32]Hansson O,Blennow K,Zetterberg H,et al. Blood biomarkers for Alzheimer’s disease in clinical practice and trials[J]. Nat Aging,2023,3(5):506-519.
[33]Cohen L,Keegan A,Walt DR. Single-molecule arrays for ultrasensitive detection of blood-based biomarkers for immunotherapy[J]. Methods Mol Biol,2020,2055:399-412.
[34]Ossenkoppele R,van der Kant R,Hansson O. Tau biomarkers in Alzheimer’s disease:towards implementation in clinical practice and trials[J]. Lancet Neurol,2022,21(8):726-734.
[35]Brickman A,Manly J,Honig L,et al. Plasma p‐tau181,p‐tau217,and other blood‐based Alzheimer’s disease biomarkers in a multi‐ethnic,community study[J]. Alzheimers Dement,2020,17:1353-1364.
[36]Gonzalez-Ortiz F,Kac PR,Brum WS,et al. Plasma phospho-tau in Alzheimer’s disease:towards diagnostic and therapeutic trial applications[J]. Mol Neurodegener,2023,18(1):18.
[37]Huang ZW,Zeng HX,Huang YP,et al. The relationship between obstructive sleep apnea and circulating tau levels:a meta-analysis[J]. Brain Behav,2023,13(4):e2972.
[38]Kong W,Zang Y. Alzheimer’s disease biomarkers in patients with obstructive sleep apnea hypopnea syndrome and effects of surgery:a prospective cohort study[J]. Front Aging Neurosci,2022,14:959472.
[39]Liu WT,Huang HT,Hung HY,et al. Continuous positive airway pressure reduces plasma neurochemical levels in patients with OSA:a pilot study[J]. Life (Basel),2023,13(3):613.
[40]Sun H,Gao Y,Li M,et al. Altered amyloid-β and tau proteins in neural-derived plasma exosomes in obstructive sleep apnea[J]. Sleep Med,2022,94:76-83.
[41]Cullen N,Janelidze S,Palmqvist S,et al. Association of CSF Aβ38 levels with risk of alzheimer disease-related decline[J]. Neurology,2022,98(9):e958-e967.
[42]van Dyck CH,Swanson CJ,Aisen P,et al. Lecanemab in early Alzheimer’s disease[J]. N Engl J Med,2023,388(1):9-21.
[43]Hoy SM. Lecanemab:first approval[J]. Drugs,2023,83(4):359-365.
[44]Braak H,Zetterberg H,Del Tredici K,et al. Intraneuronal tau aggregation precedes diffuse plaque deposition,but amyloid-β changes occur before increases of tau in cerebrospinal fluid[J]. Acta Neuropathol,2013,126(5):631-641.
[45]Selkoe DJ. Alzheimer’s disease:a central role for amyloid[J]. J Neuropathol Exp Neurol,1994,53(5):438-447.
[46]Ooms S,Overeem S,Besse K,et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men:a randomized clinical trial[J]. JAMA Neurol,2014,71(8):971-977.
[47]Wang X,Xie Y,Chen G,et al. Intermittent hypoxia therapy ameliorates beta-amyloid pathology via TFEB-mediated autophagy in murine Alzheimer’s disease[J]. J Neuroinflammation,2023,20(1):240.
[48]Reddy OC,van der Werf YD. The sleeping brain:harnessing the power of the glymphatic system through lifestyle choices[J]. Brain Sci,2020,10(11):868.
[49]Egashira N,Iwasaki K,Ishibashi M,et al. Hypoxia enhances beta-amyloid-induced apoptosis in rat cultured hippocampal neurons[J]. Jpn J Pharmacol,2002,90(4):321-327.
[50]Chen GJ,Xu J,Lahousse SA,et al. Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons:Potential strategies for neuroprotection1[J]. J Alzheimers Dis,2003,5(3):209-228.
[51]Turner AD,Locklear CE,Oruru D,et al. Exploring the combined effects of sleep apnea and APOE-e4 on biomarkers of Alzheimer’s disease[J]. Front Aging Neurosci,2022,14:1017521.
[52]Chatterjee P,Pedrini S,Doecke JD,et al. Plasma Aβ42/40 ratio,p-tau181,GFAP,and NfL across the Alzheimer’s disease continuum:a cross‐pal and longitudinal study in the AIBL cohort[J]. Alzheimers Dement,2023,19(4):1117-1134.
[53]Motamedi V,Kanefsky R,Matsangas P,et al. Elevated tau and interleukin-6 concentrations in adults with obstructive sleep apnea[J]. Sleep Med,2018,43:71-76.
[54]Przybylska-Kuć S,Zakrzewski M,Dybała A,et al. Obstructive sleep apnea may increase the risk of Alzheimer’s disease[J]. PLoS One,2019,14(9):e0221255.
[55]Chen YS,Chen MH,Wang PM,et al. Increased levels of plasma Alzheimer’s disease biomarkers and their associations with brain structural changes and carotid intima-media thickness in cognitively normal obstructive sleep apnea patients[J]. Diagnostics (Basel),2022,12(7):1522.
[56]Tsai CY,Wu SM,Kuan YC,et al. Associations between risk of Alzheimer’s disease and obstructive sleep apnea,intermittent hypoxia,and arousal responses:a pilot study[J]. Front Neurol,2022,13:1038735.